
The concept of real number, following
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Detlef D. Spalt

Abstract. A hitherto unknown construction of the real numbers is given. It was a
unique idea by KARL WEIERSTRASS and it is the most elementary ever known.

Conway’s ideal

“Proceed from the natural numbers to the non-negative ratio-
nals (or the strictly positive ones if you prefer), then construct the
non-negative (or positive) reals from these, so having no sign-
problem, and then construct signed reals from these in the way
that we constructed the signed integers from the natural num-
bers. I think that this is in fact the simplest way to construct the
real numbers along traditional lines.
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[. . . ] We start from what is essentially just set theory, given half-a-dozen induc-
tive definitions and a dozen inductive proofs (mostly one-liners), and we have a
field of all surreal numbers. Since this includes the smaller field of all real num-
bers, we surely have a much simpler construction of these than the traditional
one?”1

As is known, JOHN HORTON CONWAY (1937–2020) did not follow the above ideal but con-
structed his positive and negative numbers together. However, until now it has not been
realized that a century earlier KARL WEIERSTRASS (1815–97) already proceeded along the very
same lines suggested by CONWAY. WEIERSTRASS did not even need the fractions to construct
his irrational and his real numbers, only to order them.

1 Natural, fractional and irrational quantities

Let us take the natural numbersN be given, 0 6∈N.

∗Earlier versions of this manuscript have been refused by the American Mathematical Monthly (09.10.2018), Ele-
mente der Mathematik (21.02.2018), Mathematische Zeitschrift (17.04.2018), Mathematische Semesterberichte
(22.10.2018, 10.07.2019), Notices of the American Mathematical Society (11.05.2019) and The Mathematical
Intelligencer (26.04.2021). Unfortunately, ARXIV only accepts members of organizations as authors. I thank
our-isp.org for their generosity.—A first publication is Spalt 2019, pp 196–208, a public talk was Spalt 2020.

1Conway 1994, pp. 95, 99 (only the text)
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BASIC DEFINITIONS. Call each N
f→N∪ {0} a quantity, and distinguish:

1. if f (1) 6= 0 and f (n) = 0 otherwise, we have a natural quantity,

2. if | f −1 (N\ 0) | is finite, we have a fractional quantity, and

3. all others are called irrational quantities.

The idea is, of course, to think of an element (n, f (n)) as a usual fraction f (n)
n . Then f is a set

of usual fractions, no two of them having the same denominator. A fractional quantity is a
ruler with finite precision, an irrational quantity is a ruler with infinite precision.

EXAMPLES. {3
1 , 9

3

}
is a fractional quantity ,{ 3

101 , 3
102 , 3

103 , . . .
}

is an irrational quantity.

DEFINITIONS.

1. The sum of two quantities is defined pointwise:

( f + g )(n) := f (n)+ g (n) .

2. The product of two quantities is their convolution:

( f · g )(k) = ∑
n ·m = k

f (n) · g (m) . 2

REMARKS.
(a) Addition and multiplication are associative as well as commutative, and the multiplica-

tion is distributive against the addition. (These features are hereditary from N and the
set-functions to the quantities.)

(b) Addition, as well as multiplication, is in general not reversible, because set-operations
are not.

DEFINITION.

3. A fractional quantity f is called at constituent of a quantity g , if there exist
finitely many (additive) transformations of the elements of g such that the
result g ′ satisfies:

f ⊂ g ′ .

(We know what an additive transformation of a usual fraction is.)

EXAMPLE.
{1

3

}
is a constituent of

{1
2

}
, because

1
2 = 3

6 = 2
6 + 1

6 = 1
3 + 1

6 .

2These formulations of the matter were invented by my admired teacher Prof. KLAUS KEIMEL (1939–2017) in
August 2017.
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DEFINITION.

4. Two (irrational) quantities are equal (=), if each constituent of one of them is
a constituent of the other quantity.

EXAMPLE. {1
2 , 1

22 , 1
23 . . .

}= {1
1

}
.

This proof demands analytical arguments.

Having fixed equality, we have to prove:

THEOREM. If g = g ′, we have f ◦ g = f ◦ g ′ (” ◦“ means ” +“ or ” ·“).

This can be shown as g ′ is derived from g by finitely many transformations.

DEFINITIONS.

5. If in definition 4 only one case holds, this defines the relation less than (<).

6. An irrational quantity q is called finite, if there exists a natural quantity n such
that q < n.

(The last definition equivocally gives the notion convergence for series of usual fractions.)

2 Real quantities

We recall Conway 1994: ”[. . . ] and then construct signed reals from [the positive reals] in the
way that we constructed the signed integers from the natural numbers. I think that this is
in fact the simplest way to construct the real numbers along traditional lines.“ KARL WEIER-
STRASS was indeed able to proceed in this way, for today we can say:

The set of all (finite) quantities, together with 0, is an additive—as well as a mul-
tiplicative—monoid.

We are used to expanding a monoid H to a group H × H and taking care about ordered
pairs. However, as in the case of complex numbers (we often take x + i y instead of (x, y)), the
order is arbitrary; we only have to discern between the one component (”real“) and the other
one (”imaginary“). Therefore, we create (like WEIERSTRASS) the

DEFINITION. A real quantity− a is an unequal pair

a := q +h r ,

where q and r are finite irrational quantities or 0 and h (6= 1) a symbol with the
meaning h 2 = 1.

Caution: A real quantity− is not a quantity!
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These real quantities− q +h r , together with today’s familiar definitions

q +h r = s +h t :⇐⇒ q + t = s + r

(q +h r )⊕ (s +h t ) := (q + s)+h (r + t )

(q +h r )ª (s +h t ) := (q + t )+h (s + r )

form an additive group and together with the trivial definition

(q +h r )¯ (s +h t ) := (q · s + r · t )+h (q · s + t · r )

a ring with 1.
We are yet to define
(i) true (not only formal) subtraction and
(ii) division.

3 Values

A quantity is a function N
f−→ N∪ {0}. Going further than WEIERSTRASS, we add two condi-

tions:

1. dom f = {
zk | k ∈N∪ {0}

}
for a base z ∈N\{ 1 }; or dom f = {k ! | k ∈N }; or the

like.
2. f (n)

n < 1
m , where f (m) 6= 0 and f (k) = 0 for n < k < m,

and we demand the

DEFINITION. A place value number (with base z ∈ N \ { 1 } ) is a quantity, which
meets both conditions above.

We know that decimal numbers and binary numbers are place value numbers. Now we
have the following important

THEOREM. For each finite quantity q and any place value system P we have a place
value number q (P ) with q = q (P ).

PROOF (for base z = 2). Let q be some finite quantity > 0. Obviously, there exists a fractional
quantity f with 0 < f < q . But we can transform a fractional quantity f to a usual fraction
fu = f and this number to a place value number p f = fu . Therefore, we obtain a place value
number p f with 0 < p f < q . Now, Hilbert 1923 proved that the binary numbers are complete.
That is why there exists the place value number

q (2) := sup
{

p | p is a place value number with base 2 and p < q
}

,

and we have q = q (2). ■
The mapping q 7→ q (P ) may be called a representation of q . Caution: Representations are

not isomorphisms but only homomorphisms concerning addition and multiplication.
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The fractional quantity f in the proof above does not depend on the place value system.
Therefore, this proof shows the natural fact:

THEOREM. All place value systems contain the same numbers.

DEFINITIONS.

1. The quantity

q (P ) ≡Wz (q) := sup
{

p | p is a place value number (with base z) and p < q
}

is called the representation of the quantity q in the place value system P (with
base z).

2. Value of a quantity q is its representation q (P ) ≡ Wz (q) in a place value sys-
tem P (with base z).

EXAMPLES. W10
({2

1 , 3
2

}) = 3.5,

W10
({ 3

101 , 3
102 , 3

103 , . . .
}) = 0.3̄ . . .

3. Value of a real quantity− q+h r is its represenation (q+h r )(P ) ≡Wz (q+h r ) :=
q (P ) − r (P ) ≡Wz (q)−Wz (r ) in a place value system P (with base z).

EXAMPLE.
W10

({2
1 , 3

2

}
,
{ 3

101 , 3
102 , 3

103 , . . .
}) = 3.5 − 0.3̄ . . . = 3.16̄ . . .

For centuries we have known how to subtract and how to divide place value numbers.3

WEIERSTRASS’ idea shows:

The usual place value numbers may be constructed without assuming any analyt-
ical fact.

Handling place value numbers calls for some basic facts of calculus, a fact which is of-
ten not appreciated. In general, division demands such facts, and this shows: WEIERSTRASS’
construction constitutes them as a ring, not a field. But the real numbers are just the real
numbers—whatever you might think about their structure.4

The only analytical concept used in this construction (besides the infinite set) is the supre-
mum. It is needed to prove the existence of the value of any finite irrational or real quantity(−).

3A modern textbook is Rautenberg 2007.
4”A set of terms has all the orders of which it is capable.“ and ”just as we may notice among the fixed stars either

their order of brightness or their distribution in the sky, so there are various relations among numbers which
may be observed, and which give rise to various different orders among numbers, all equally legitimate.“ (Rus-
sell 1920, pp. 35 f.)
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Philosophical aspects

At least since ARISTOTLE, traditional philosophy creates its concepts as abstractions from re-
ality. For millenia mankind lived without negative numbers, just imagine the abacus. There
is no real thing that might be abstrated to the number −1. Until today, WEIERSTRASS is the
only mathematician who constructed the real numbers without resort to negative numbers.

Furthermore, WEIERSTRASS was the first (and is, up to my knowledge, till today the only)
mathematician, who constructed the real numbers with unordered sets. Having known this,
BERTRAND RUSSELL never would have claimed: ”The generalizations of number—with the
exception of the introduction of imaginaries, which must be independently effected—are all
necessary consequences of the admission that the natural numbers form a progression.“5

Some historiographical highlights

In WEIERSTRASS’ thought, a quantity is a set, the elements of which are units en and their
multiplicities kn , i.e. kn ·en ; the units en are the ”exact parts“ of the main unit e1 := 1.

It is absolute sensational that WEIERSTRASS (working earlier that 1887) founded his con-
cept of real quantity on the concept of set. (It is well-known that GEORG CANTOR only coined
the concept of set in 18956.) As WEIERSTRASS was not absolutely clear about this point, no-
body understood this subtlety7, and everybody thought his quantities were sequences—cf.
e.g. BERTRAND RUSSELL8 or JULES MOLK9.

MOLK attended WEIERSTRASS’ lecture in winter 1882/8310. So he improved ALFRED PRINGS-
HEIM’s article on irrational numbers11 in the Encyklopädie der mathematischen Wissenschaften
mit Einschluß ihrer Anwendungen from 1898 in its french edition Encyclopédie des Sciences
Mathématiques Pures et Appliquées.

The first sentence of MOLK’s article reads:

”In his lessons, Professor K. WEIERSTRASS at the university of Berlin called nu-
merical quantity each ’ensemble‘, whose elements as well as the number, how
often each element appears, were given.“12

Now, in 1906 the french word ”ensemble“ meant: ”whole“, ”sum“, ”unity“, ”correspon-
dence“, ”cast“, ”interplay“—whatever, but it did not mean ”set“; and it did not read ”ag-
gregate“. But when the contemporary mathematician CHRISTOPHER TWEDDLE once came
across MOLK’s article13, he wrongly read MOLK’s ”ensemble“ as ”set“ and felt oblidged to for-

5Russell 1903, § 264, p. 278
6Cantor 1895–1897
7including myself: Spalt 1991; cf. Dieudonné 1992
8Russell 1903, ch. XXXIV, n. 268, p. 282
9Pringsheim and Molk 1904–1909, p. 152, footnote 56

10Vogt 1914, p. 381
11Pringsheim 1898
12Pringsheim and Molk 1904–1909, pp. 149 f.
13Tweddle 2011, p. 50, l. 10

6



mulate a manuscript entitled ”Weierstrass’s Construction of the Irrational Numbers“. He did
not cite MOLK,14 when he pretended that WEIERSTRASS had given the definition:

”A positive real number is an equivalence class of aggregates which have finite
value.“15

TWEDDLE did ”not rigorously verify the ordered field axioms are satisfied for WEIERSTRASS’s
theory of real numbers“15, but he proved by induction (sic!):

”Lemma. Each positive real number contains in its equivalence class a ’standard
infinite decimal‘ representative.“ 16

Unfortunately, the Mathematische Semesterberichte refused my manuscript in July 2019,
wherein I pointed out TWEDDLE’s misunderstandings and failures.

Now, how have I been able to correct the age-old misapprehension that WEIERSTRASS de-
fined an irrational quantity to be a sequence?

The story is this: In summer 2016 an old filing cabinet in the Mathematical Library of the
institute of mathematics of the Goethe-University of Frankurt was opened, and professor JÜR-
GEN WOLFART informed me about the discovery of an apparently interesting manuscript in
August. This manuscript was written by EMIL STRAUSS, who attended WEIERSTRASS’ lecture
in winter 1880/81. It embraces 171 pages, the first 113 of which are concerned with the con-
cepts of number up to and including the reals. After some months of thinking I decided to
take the following two sentences word-for-word:

”Just for the record: two different aggregates can be considered as equal only if,
first, both contain the same units, and second, each single unit is equally often
contained in both of them. If we imagine the aggregate as a series of different
things, then the succession of the different things is something unimportant to
us, i.e. if we change the succession [or: sequence] of these things, there always
remains a quantity, which we regard as equal to the former one.“17

If this were to be taken literally, WEIERSTRASS based his construction absolutely on sets, not
on sequences. And the proof of the pudding is in the eating thereof.

I am indebted to JOHN D. SMITH, London, for correcting my language.

14Indeed, the name ”Molk“ is totally absent in Tweddle 2011.
15Tweddle 2011, p. 54
16Tweddle 2011, pp. 54 ff.
17Strauß (Winter 1880/81), pp. 30 f.—Later on, I discovered the sentence: ”A quantity, which is composed from in-

finitely many elements of the kind so far regarded, is conceptually completely defined, if it is possible to specify
for every unit, how often it is contained in it.“—Kneser (Winter 1880/81), p. 23. (This sentence is even cited in
the historical literature—see Purkert and Ilgauds 1987, p. 38—, but without being taken seriously.)—The third
known lecture notes from winter 1880/81, Ramsay (Winter 1880/81), do not contain such a definition.
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